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Abstract

The hydrodynamic micro-scale model, developed previously, is used to solve the non-isothermal interface equation.

The complex interface equation is simpli®ed in a coordinate frame that moves with the three-phase contact line. This

equation accounts for e�ects of evaporation, thermo-capillary and intermolecular forces. The new non-isothermal

interface equation provides generalization of de GennesÕ equation that applies to the isothermal case. The simpli®ed

third-order di�erential equation is solved numerically, and the e�ect of numerical parameters and selection of boundary

conditions on solution convergence are established for a wide range of properties of solid±liquid pairs. In contrast to the

smooth isothermal interfaces, non-isothermal interfaces are characterized by an undulating or wavy geometry. This

behavior is a re¯ection of evaporation and mass transfer occurring across the interface, and unique capillary and

thermocapillary e�ects that arise under non-isothermal conditions. A parametric study of the interface solution shows

that increase of the capillary, C, and thermocapillary, Ch2
0=F numbers produces steeper interface pro®les, whereas the

factor N, evaporation coe�cient S, and the Hamaker constant �A, produce the reverse e�ect. Larger values of N, S and �A
result in higher undulation frequencies. These e�ects intensify and become dominant under rewetting conditions. The

new interface equation provides an advanced tool for further studies of hydrodynamic mechanisms that govern the

motion of thin liquid ®lms on hot solid surfaces, that involve high temperature gradients and intense evaporation. This

furnishes a hydrodynamic foundation for analysis of rewetting phenomena, and the de®nition of rewetting temperature

and quench velocity, that are presented in a subsequent paper. Ó 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The formulation of a non-isothermal, microscale

hydrodynamic model of the three-phase contact zone

near the quench front, which propagates during re-

wetting of hot surfaces, is given elsewhere [1], and

summarized in Appendix A. In this process, a contact

line is formed at the triple point on the solid, separating

the liquid and vapor (see Fig. 12). The interaction be-

tween the three phases in this zone determines the ve-

locity and a�ects the dynamics of the ¯ow ®eld behind

the rewetting quench front.

The processes at and near the contact line are quite

complex [2], involving several phenomena (hydrody-

namics, thermodynamics, heat transfer, intermolecular

forces, surface tension). Huh and Scriven [3] considered

the case of simple ¯uid wedge and showed that the wedge

pro®le leads to a logarithmic singularity in the viscous

dissipation term. Body forces a�ect the ®lm spreading on

solid in a classical sense: gravity will greatly promote the

spreading if the hydrostatic head is appreciable. In very

small scales, where gravity is negligible, the solid±liquid

attraction forces become dominant. Surface forces enter

the description through the liquid±gas interface on which

surface tension acts. Furthermore, if the contact line

moves, and the no-slip condition is applied on the solid±

liquid interface, then, as shown by Dussan and Davis [4]
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there is a force singularity at the contact line. The impli-

cation is that on the continuum level there is an e�ective

slip of the liquid on the wall. In the two-dimensional case,

where the liquid±vapor interface is located at z � h�x; t�,

the interface slope, hx, at the contact line, satis®es the

condition hx�x; t� � ÿ tanh, where h is the contact angle.

If the interface moves with velocity U, then one may

specify h � f �U�, which determines the mobility of the

Nomenclature

a characteristic molecular size (m)

a1, a2, a3 coe�cients of velocity pro®le, Eq. (6)

(dimensionless)

A Hamaker constant (J)
�A Hamaker constant, A=6pglU0L2h0

(dimensionless)

C capillary number, glU0=rh3
0

(dimensionless)

E parameter, klDT=qlHlLU0h
2
0

(dimensionless)

ET numerical tolerance (dimensionless)

f denotes function

F parameter, cDT/r (dimensionless)

h�n�; h�x; t�; h liquid±vapor interface pro®le: function

of n, of (x,t), and general notation

(dimensionless)

H ®lm thickness (height of interface) (m)

Hl heat of evaporation (kJ/kmol)

js mass ¯ux in stationary coordinate

system of the solid (dimensionless)

jCL mass ¯ux in moving coordinate system

attached to the contact line (quench

front) (dimensionless)

J mass ¯ux at the interface (kg/m2 s)

K empirical velocity coe�cient for

U0 (m/s)

L horizontal scaling length, a=h2
0 (m)

m empirical power in velocity correlation

for U0 (dimensionless)

M molecular weight (kg/kmol)

n number of grid points (dimensionless)

n unit vector normal to the interface

N parameter,

Lh0aqvH 2
l =klT 3=2

s

ÿ �
M=2pR� �1=2

(dimensionless)

p total pressure, p� phyd + /
(dimensionless)

phyd hydrostatic pressure (dimensionless)

P total pressure (Pa)

q1, q2, q3 boundary conditions at n � 0, Eq. (24)

(dimensionless)

R universal gas constant (J/kmol K)

R� parameter, Eq. (7) (dimensionless)

S parameter, �L=rqvh0��klDT=Lh0Hl�2
(dimensionless)

t time (dimensionless)

T temperature (K or °C)

DT characteristic temperature di�erence,

Tw ) Ts (K)

u(z) velocity component in n (or x) direc-

tion (dimensionless)

u� contact line (quench front) velocity

(dimensionless)

U velocity of interface (m/s)

Urew rewetting (quench front) velocity (m/s)

U0 representative quench front velocity

Khm
0 (m/s)

V velocity

w1, w2 coe�cients, Eq. (20) (dimensionless)

x, X horizontal coordinate in stationary

system, along the solid wall

(dimensionless, m)

z, Z vertical coordinate, normal to the solid

wall (dimensionless, m)

Greek symbols

a molecular accommodation factor

(dimensionless)

c slope of linear r(T) correlation

(N/mK)

/ total e�ective potential of inter-

molecular forces acting on liquid

molecule (dimensionless)

g dynamic viscosity (kg/m s)

k thermal conductivity (W/m K)

h contact angle (rad)

h0 reference contact angle (rad)

H temperature (dimensionless)

q density (kg/m3)

r surface tension (N/m)

s time (s)

n coordinate (in x-direction) in a moving

frame of reference attached to the

quench front, Eq. (1) (dimensionless)

Dn grid size (dimensionless)

Subscripts

c critical

l liquid

s saturation

v vapor

w wall (solid)

n di�erentiation with respect to n

Superscript

I interface (at z� h)
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contact line as discussed by Dussan [2] based on exper-

imental observations in isothermal situations. Tanner [5]

studied spreading (wetting) of droplets on a solid surface

(without heat transfer). He considered viscous and cap-

illary forces only and used lubrication theory to describe

the behavior of the bulk ¯uid away from the contact line.

He found empirical power laws for the droplet radius as

a function of time, t, for large t: r � t1=7 in the two-di-

mensional case and r � t1=10 in the axisymmetric case.

Lopez et al. [6] took a similar approach, but ignored

capillarity, and included gravity or long-range molecular

forces near the contact line. They found di�erent power

laws for the spreading rate of the contact line.

Another approach to spreading is that of de Gennes

[7] who examined the small-scale physics of contact lines.

His model includes long-range van der Waals repulsion,

and predicts a rather large droplet, that possesses no

contact line, but instead smoothly blends into a pre-

cursor ®lm, which extends forward from the main bulk,

far along the wall. This approach leads to useful infor-

mation on the functional form of U � f �h�. Greenspan

[8] considered a local slip near the contact line. In his

model, the capillary and viscous forces are included,

with the assumption of linear f. He used lubrication

theory for ¯at droplets, and obtained an evolutionary

system, giving the history of the interface form. Ehrhard

and Davis [9] generalized GreenspanÕs approach, re-

placing the angle-versus-speed function by U � Khm
0 ,

where K is an empirical coe�cient and the power m is

called mobility exponent. Greenspan assumed m � 1,

while they took m � 3, as suggested by Ho�man [10] and

Tanner [5] using data on contact-line dynamics.

De Gennes et al. [11], discussed the local slopes h(x)

(interface pro®le), and the dominant physical cut-o� for

the line singularity. They showed that the slippage pro-

cess does exist, but it is only relevant for a very small

®lm thickness, where the whole continuum description

breaks down. They concentrated on a situation of par-

tial wetting, where four special regions around the

contact line are distinguished: molecular, proximal,

central and distal. The molecular region cannot be de-

scribed by continuum theory. The proximal region is

controlled by long-range forces, the central is controlled

by shear ¯ow plus capillarity and the distal region is

controlled by shear ¯ow plus gravitational forces. De

Gennes [7] simpli®ed the problem analysis considerably

by attaching the reference coordinate frame to the triple

line, so as to obtain a quasi-steady representation. The

liquid±gas interface equation developed in his model

incorporates the e�ects of capillarity, long-range forces

(described by the Hamaker constant) and slow Pois-

seuille ¯ows. He restricted his attention to situations of

small slopes, i.e. hx � 1. This allows the use of a linea-

rized form for the capillary pressure, a lubrication ap-

proximation for the ¯ow and a simple description of the

van der Waals forces.

Ben David et al. [1] propose to extend the de Gennes

approach so as to cover cases of non-uniform temper-

ature and evaporation at the interface. A non-isothermal

micro-scale model of the three phase (solid±liquid±

vapor) contact zone is formulated in the context of

rewetting phenomena. The model incorporates hydro-

dynamics, heat transfer, interfacial phenomena and in-

termolecular long-range forces, in a two-dimensional

proximal region of the order of 1000 �A (100 nm) in

width, and 100 �A (10 nm) in thickness. The model

comprises scaled mass, momentum and energy balances,

and their corresponding scaled boundary conditions.

The small contact angles which are characteristic of

rewetting situations facilitate the use of the lubrication

approximation, and the dynamics of the liquid and gas

phases is decoupled by applying the one-sided simpli®-

cation. Thermo-capillary, conduction/evaporation and

solid±liquid intermolecular attraction e�ects are ex-

pressed by appropriate dimensionless numbers. The

present work includes the derivation of the interface

equation, emerging from this model, its solution and a

parametric study of the ®lm thickness behavior.

2. Theory: derivation of the liquid±vapor interface equa-

tion

The model developed by Ben David et al. [1] for the

proximal region near the three-phase contact line, com-

prises a system of partial scaled di�erential equations and

boundary conditions, describing the hydrodynamics and

heat transfer in this region. A summary of the balance

equations, boundary conditions and main assumptions is

presented in Appendix A. The system was derived by

linearization through the lubrication approximation, and

several other simpli®cation procedures, e.g., the one-

sided approach. In the present work, an analytical so-

lution of this system is obtained, which leads to the

derivation of an equation for the liquid±vapor interface,

h(x, t). Solving this equation for h enables determination

of the three-phase contact zone where rewetting may

occur. The ¯ow and temperature ®elds, given in terms of

h(x, t), can then be written explicitly.

Appendix B includes a formal derivation of the

complete interface equation. However, this equation is

excessively complicated due to the transient treatment of

the problem, as reported by de Gennes [7]. Therefore, an

additional simpli®cation of the linearized system of

equations is suggested, in order to derive a more

amenable interface equation, based on and extending his

hydrodynamic approach. The interface equation for

h(x, t) is derived from the conservation equations and

boundary condition balances developed by Ben David

et al. [1]. The parameters here are dimensionless, accord-

ing to the de®nitions, scaling, and notation introduced

there (see Appendix A and the nomenclature).
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De Gennes [7] showed that working with a coordi-

nate frame attached to the moving contact line, greatly

simpli®es the hydrodynamic treatment of the problem.

In rewetting situations, the liquid front moves at an

almost constant velocity, and hence, a quasi-steady de-

scription of the interface pro®le is valid, cf., Olek et al.

[12,13]. Therefore, using the contact line dimensionless

velocity, u�, de®ned later, in Eq. (8), the following

transformation of coordinates is applied:

n � xÿ u�t: �1�
In this way h � h�n� does not depend on the time, t, and

the problem description is quasi-stationary. The tem-

perature ®eld, H�n; z�, is obtained in terms of the inter-

face pro®le h (unknown at this stage), by solving the

energy Eq. (A.16) with the boundary conditions (A.17)

and (A.21)

H�n; z� � 1� N�hÿ z�
1� Nh

; 06 n6 1: �2�

Note that according to the de®nitions, derivations

and scaling, 06 n6 1 at the quasi-steady state that fol-

lows from Eq. (1). This corresponds to a dimensional

range of 1000 �A (100 nm).

The temperature HI, at the interface z � h�n�, takes

the following form:

HI � 1

1� Nh
: �3�

Two limiting cases may be distinguished in Eq. (3) as

follows:

N ! 0 : HI ! 1; �4�
N !1 : HI ! 0: �5�

Thus, in both limits the temperature along the liquid±

vapor interface tends to an a priori known constant. The

case N ! 0 represents perfect conduction, where the

temperature is uniform across the ®lm, equal to that of

the solid, see Eq. (2). In the second case, N !1, the

interface temperature becomes equal to the saturation

temperature. After the interface equation is solved (in

the following) to ®nd h�n�, the temperature distribution

H�n; z� can be determined explicitly.

De Gennes [7] suggested an elegant approach to an-

alyze the dynamics of the three-phase contact line. His

approach, which is limited to the isothermal case, is

modi®ed and extended here to treat non-isothermal

conditions characterizing rewetting situations. The main

assumption is that the ®lm considered is very thin and

¯at, so that a parabolic velocity pro®le can be postulated

u�z� � a1z2 � a2z� a3; �6�
where the coe�cients a1, a2 and a3 (which depend on n
and t through h) are calculated by the boundary con-

ditions. The no-slip condition at the wall, Eq. (A.17),

yields a3 � 0. Introducing the last expression and that

for the temperature, Eq. (2), into the boundary con-

dition at the interface z � h, as de®ned by Eq. (A.20), the

following relation between a1 and a2 is obtained:

2a1h� a2 � Nhn

Ch2
0

F

� �
�1� Nh�2

� R�: �7�

A second relation between a1 and a2 is obtained by

calculating the average dimensionless velocity, u� (which

is considered to be the velocity of the contact line, or

quench front)

u� � 1

h

Z h

0

�a1z2 � a2z�dz � 2a1h2
� � 3a2h

�
=6: �8�

Solving Eqs. (7) and (8) for a1 and a2 gives

a1 � ÿ 3u�

2h2
� 3R�

4h
; a2 � 3u�

h
ÿ R�

2
: �9�

Introducing the second derivative of the velocity

function, Eq. (6), into the momentum equation (force

balance) in the horizontal direction, Eq. (A.14), gives

uzz � 2a1 � pn: �10�
By substituting the expression for a1, Eq. (9), the

following expression for the average velocity, u�, is

obtained:

u� � ÿ 1

3
pn

�
ÿ 3R�

2h

�
h2: �11�

The horizontal mass ¯ux (in the coordinate frame of

the solid), js, is given by multiplying the average velocity,

u�, by the layer thickness, h

js � ÿ 1

3
h3pn � 1

2
R�h2: �12�

In the frame of the moving contact line (CL), the ¯ux

js becomes

jCL � js ÿ u�h: �13�
For steady-state solutions, where no ®lm exists far

ahead of the contact line, jCL must vanish. This leads to

the following equation of the liquid±vapor interface:

ÿ 1

3
h2pn � 1

2
R�hÿ u� � 0: �14�

The pressure distribution in the ®lm can be obtained

by combining the de®nition of the generalized pressure

and the normal stress balance, Eqs. (A.11) and (A.19).

This gives the following expression [7]:

p�n; z� � phyd � /

� 1

C

�ÿ hnn�1ÿ F HI� � Sj2
�ÿ �A

h3
�

�A
z3
: �15�

Di�erentiation of Eq. (15) with respect to n, substi-

tution of the explicit expressions for j, Eq. (A.18), and
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for HI and R�, Eqs. (3) and (7), and introduction into

Eq. (14) yield a third-order non-linear ordinary di�er-

ential equation for h(n)

hnnn 1

�
ÿ F

1� Nh

�
� hnnhn

FN

�1� Nh�2

� hn
2SN 3

�1� Nh�3
"

ÿ 3C �A
h4
� 3NF h2

0

2h�1� Nh�2
#
� 3Cu�

h2
� 0;

�16�
where F, N, S, C, �A and NF h2

0 are dimensionless groups

(their de®nitions appear in the nomenclature).

In order to get a better insight concerning the ex-

pected behavior of the solution of Eq. (16), the simpler

isothermal case is considered ®rst. In this case,

DT � Tw ÿ Ts � 0, and hence,

F � 0; S � 0; C=F !1: �17�
Introducing these values into Eq. (16) yields

rh3
0hnnn ÿ 3glU0

�Ahn=h4 � 3glU0u�=h2 � 0 �18a�
and the dimensional form of this equation is obtained as

rHXXX ÿ A
2p

HX

H 4
� 3glu

�U0

H 2
� 0: �18b�

Eq. (18b) was derived by de Gennes [7], for the iso-

thermal, non-volatile case. Thus, the interface Eq. (16),

developed in the present work, is an extension of de

Gennes, where the e�ects of temperature gradients,

evaporation and thermo-capillarity are included. The

terms in Eqs. (18a) or (18b) express the capillary e�ect,

the long-range forces due to the solid±liquid interaction

and the viscous e�ect of the ¯ow.

Eq. (16) of the liquid±vapor interface also includes

the e�ect of temperature gradients along the interface.

All the terms that contain di�erent powers of

1=�1� Nh�, e.g., the temperature HI as per Eq. (3), are

due to this gradient. For convenience, the seven terms of

Eq. (16) (®ve of them are between parentheses) are

identi®ed by numbering them from left to right. Terms

2, 3, 4 and 6 are associated with the interface tempera-

ture, HI. Terms 2, 3, 5, 6 and 7 include either F or C. The

former one expresses the change in surface tension with

temperature, and the latter is the capillary number,

which is the ratio of the dissipative e�ects of the contact

line velocity, and the variations of the mean surface

tension.

From the de®nitions of C and F, it follows that their

ratio

C
F
� glU0

cDT h3
0

�19�

is proportional to the thermo-capillary number. This is a

consequence of the tangent shear stress boundary con-

dition (A.20). Terms No. 2, 3, and 6 of Eq. (16) express

the contribution of the thermo-capillarity e�ect. When

the wall temperature increases, C/F decreases, and thus

the e�ect of the tangential forces, which pull the liquid

back against its tendency to spread on the solid surface,

becomes more dominant. As the distance from the

contact line increases, h increases, the interface tem-

perature, being equal to 1=�1� Nh� decreases, and hence

the surface tension there is expected to be higher than its

value close to the contact line. High values of C/F may

be associated with high viscosity liquids. In this case, the

thermo-capillarity e�ect is expected to be negligible.

The fourth term of Eq. (16) includes the dimension-

less number, S, which stands for the e�ect of evapora-

tion at the interface and its associated recoil e�ect. This

e�ect is described and explained in the sequel. At el-

evated levels of the wall temperature, the values of S are

expected to be relatively large. In this case, the fourth

term becomes dominant and the liquid±vapor interface

is expected to be pressed towards the solid. Large values

of DT may lead to signi®cant perturbations of the liq-

uid±vapor interface, but at the same time, higher tem-

perature levels also cause the ®lm to be ¯atter. This

increases the solid±liquid attraction forces (term 5 in Eq.

(16)) which act to relax the interface perturbations.

These qualitative observations have been veri®ed by

speci®c solutions of the interface equation which are

discussed quantitatively in the next section.

3. Solution of the liquid±vapor interface equation

3.1. Interface equation and boundary conditions

Eq. (16) is a non-linear ordinary di�erential equation

of the third-order. It can be converted to a system of three

ordinary ®rst-order di�erential equations as follows:

h1�n� � h�n�;
oh1�n�

on
� h2�n�;

oh2�n�
on

� h3�n�;
oh3�n�

on
� 3Cu�

w1�h1�n��2
� 3FNh2

0h2�n�
2w1w2

2h1�n� ÿ
3C �Ah2�n�
w1�h1�n��4

� FNh2�n�h3�n�
w1w2

2

� 2SN 3h2�n�
w1w3

2

;

�20�

where w1 and w2 are de®ned by:

w1 � F
1� Nh1�n� ÿ 1 �21a�

w2 � 1� Nh1�n�: �21b�

In order to solve the third-order interface equation,

or alternatively, the three-equation system (20), it is
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necessary to de®ne three boundary conditions. Due to

the complexity of the three-phase contact zone, it is

impossible to de®ne them directly. For example, at

n � 0, the variable h does not vanish and it must con-

form with molecular dimensions, e.g., of the order of a

few Angstroms. At present, it is unknown what should

be the appropriate height, h�n � 0�, and hence its value

may only be guessed, or rather imposed on the system.

The validity of the guess can then be tested once the

solution, which relies on it, has been formulated. Using

the conventional approach, the second boundary con-

dition involves the derivative hn�n � 0�. The third

boundary condition is de®ned at h�n � 1�, e.g., the value

of layer thickness at the other end of the ®lm range

studied. Successive trials of di�erent combinations of

these boundary conditions did not always produce a

realistic solution for h�n�. Therefore, it was necessary to

adopt a di�erent approach, where all three boundary

conditions are assigned at n � 0, in the form of ``initial

value'' problem: h; hn and hnn at n � 0, or using the no-

tation of Eq. (20), h1, h2 and h3 at n � 0.

The system of Eq. (20) was solved by a solver taken

from the IMSL (1986) (International Mathematics

Statistics Library). This solver consists of a subroutine

named IVPRK, which uses a ®nite di�erences algorithm,

based on the Runga±Kutta±Verner ®fth/six orders

method. This subroutine was found to be convenient

because of its ¯exibility for changing the input par-

ameters. For example, the discretization of the region

06 n6 1 in the form of a grid can be controlled so that a

satisfactory shape of the interface pro®le is obtained.

The number of allowed grid points is 500, which means

that each step is of the order of a few Angstroms. The

relative error may also be controlled by the user. To this

end, the e�ect of changes in grid intervals, on the output

relative errors, were tested until a satisfactory degree of

solution accuracy has been achieved. In order to char-

acterize a suitable combination of boundary conditions,

a solution of the liquid±vapor interface, h1�n�, and its

derivatives, h2�n�, h3�n�, was worked out.

In the following, a parametric investigation of the

way and extent in which boundary conditions a�ect the

solution behavior is provided. This is done in order to

determine their appropriate form, which leads to re-

alistic solutions for di�erent materials and di�erent re-

wetting situations. Furthermore, as a preliminary step,

the solution sensitivity to variation of the numerical

parameters was examined. Numerical parameters were

tested and selected separately for each speci®c solid±

liquid system. The test procedure includes the following

steps:

(a) Input of data of thermo-physical properties of

the liquid at saturation temperature, Ts, and at-

mospheric pressure.

(b) Calculation of the dimensionless numbers that

appear in Eq. (20) N, S, F, C, C/F and �A.

(c) Initially, the wall temperature was set at

Tw � 260°C, as an estimate for the rewetting tem-

perature of water on stainless steel. In this case,

DT � Tw ÿ Ts � 160°C.

(d) In testing the e�ects of the numerical par-

ameters, h1�n�; h2�n�, and h3�n� were evaluated at

n � 0, using the same scaling procedure that led

to the derivation of Eq. (16). The following values

were selected as a consequence of the choice of

boundary conditions (see Section 3.3):

h1 � 0:25; h2 � 1; h3 � 1 at n � 0: �22�
For water on the stainless steel, the dimensional

equivalents of these boundary conditions are

O(1 nm), O(10ÿ2 rad) and O(10ÿ3 rad/nm), re-

spectively.

(e) Once the system of Eq. (20) is de®ned by the val-

ues of its dimensionless numbers, the parametric in-

vestigation of the boundary conditions may be

performed. At n � 0, there are three boundary con-

ditions that should be tested. The procedure is to

let one of them vary, while keeping the other two

®xed, so that its isolated e�ect on the equation

solution can be examined.

The following two Sections 3.2 and 3.3 include results

of investigations and tests of the numerical parameters

and boundary conditions. For water on stainless steel,

these were performed with reference values of the di-

mensionless parameters in Eq. (16) given by

u� � 1;
Ch2

0

F
� 2:8� 10ÿ3;

N � 6:5� 10ÿ3; C � 4:59; �A � 0:2128;

S � 164:5:

�23a�

For helium on stainless steel, the corresponding ref-

erence values are

u� � 1;
Ch2

0

F
� 0:189; N � 0:54;

C � 1254; �A � 7:8� 10ÿ4; S � 867:

�23b�

These numbers were evaluated by using the data

speci®ed in Table 1.

3.2. Testing of the numerical parameters

In order to ensure convergence, the e�ect of the grid

size, Dni, and the tolerance (relative error), ET, on the

solution, h�n�, was investigated. The parameters tested,

Dni and ET, are constrained by requirements of the

subroutine used. The maximum number of grid points

allowed within the interval 06 n6 1 is 500. The toler-

ance, ET, is also constrained by a lower bound of 10ÿ5.

These constraints were found to be adequate for solu-

tion of Eq. (20). The independent variable, n, varies

between zero and one (corresponding to a dimensional
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range of 100 nm). A grid of n� 500 points means that

the size of each step is O(0.2 nm). Recall that the

molecular size, a, de®ned in Eq. (A.7), is of the order of

a few Angstroms. Clearly, this step size is close to the

threshold of validity of the continuum picture. The

convergence of the solution was tested by increasing

the number, n, of grid points, until it became insensitive

to further change in n. Similarly, the tolerance, ET, was

gradually decreased from 0.5 until the change in the

solution pro®le became negligible.

The minimum acceptable number of grid points, for

the case of water on stainless steel, was found to be

greater than 13. Fig. 1(a) and (b) show the e�ect of in-

creasing n from 20 to 40, and then from 60 to 100, on a

plot of h�n� versus n. Fig. 1(b) shows that for n P 60, the

pro®le h�n� is virtually independent of the number of

grid steps. Thus, using a grid of 60 points ensures con-

vergence of the pro®le solution in the water±stainless

steel system. For other pairs of materials, satisfactory

convergence was established at di�erent values of

n6 100. Therefore, n � 100 was selected for all materials

studied in this work. Note that the wavy behavior of the

interface pro®le (Fig. 1) will be discussed later.

The e�ect of the tolerance, ET, was tested using the

least accurate grid, n � 20 for the water±stainless steel

system. The results in Fig. 1(c) show that no signi®cant

change in the solution is observable in the range

0:001 < ET < 0:01. Thus, it was decided that a grid of

100 points, with a tolerance value less than 0.01, pro-

duces an adequately convergent solution. A similar

procedure was applied to determine n and ET that pro-

duce convergent solutions for additional material com-

binations, such as di�erent liquids on stainless steel. A

plot of h�n� versus n for helium on stainless steel is de-

picted in Fig. 2. This pair was selected as an example of

a liquid having a very low saturation temperature at

atmospheric pressure, as compared to the previously

discussed example of water. For helium, n � 60 was

determined as the minimum number of grid points that

is required for satisfactory convergence. The reason for

the di�erence in n for the two liquids results from the

di�erence in their characteristic scales of the problem

domain. The dimensionless numbers that characterize

the interface equation may change signi®cantly for

di�erent materials, and consequently, the numerical

parameters also vary.

Note that this numerical testing procedure was car-

ried out for all liquids under consideration, because the

length scaling variable, L, depends on the characteristic

molecular size, a, of each of them (a2 � A=6pr). Di�er-

ent ¯uids have di�erent values of a and L �L � a=h2
0�.

For example, the scaling length for water is L � 300 nm,

and that for helium is L � 2100 nm, which is seven times

larger. Therefore, the minimum value of n needed for

helium (�60) is larger than that for water (�20). This

explains why larger number of grid points are required

to ensure convergence in the case of helium as compared

to that of water.

3.3. E�ect of choice of boundary conditions

For the sake of brevity, the three boundary con-

ditions of Eq. (22) are denoted by q1, q2 and q3, as

follows:

q1 � h1�n � 0�; q2 � h2�n � 0�; q3 � h3�n � 0�:
�24�

In order to check the e�ect of choosing di�erent

values of the three boundary conditions, two were held

®xed, while the third one was allowed to vary. The ®rst

boundary condition tested was q1, holding q2 and q3

®xed. It must have a minimum value which is greater

than zero. Accordingly, the ®rst estimate of the ®lm

thickness, q1, was set at 0.2, this being equivalent to a

few Angstroms. The parameter q1 was increased by

steps of 0.05 until the value of 0.65 was reached. In this

Table 1

Thermo-physical properties of various ¯uids

Fluid properties at saturation conditions Helium (He) Water (H2O)

p Pressure (kPa) 103 103

Ts Saturation temperature (°C) )268.9 100

ql Liquid density (kg/m3) 125 960

qv Vapor density (kg/m3) 0.178 0.600

kl Thermal conductivity (W/m K) 3:50� 10ÿ2 0.680

gl Dynamic viscosity (kg/m s) 0:98� 10ÿ4 2:88� 10ÿ4

r Liquid±vapor surface tension (N/m) 0:12� 10ÿ3 59� 10ÿ3

c c � or=oT (N/m K) 0:093� 10ÿ3 0:18� 10ÿ3

Tc Critical temperature (K) 5.25 647

Hl Heat of evaporation (J/kg) 2:093� 104 2:3� 106

M Molecular weight (kg/kmol) 4.002 18

a Molecular core diameter (nm) 0.257 0.282

e/k Minimum potential of energy divided by Boltzmann constant (K) 10.8 231

Trew Olek et al. [12] rewetting temperature �°C� Trew �
������������
Ts � Tc

p
)268.4 218.2

M. Ben David et al. / International Journal of Heat and Mass Transfer 44 (2001) 1323±1342 1329



range, an acceptable minimum value of q1 was deter-

mined (see following analysis). The e�ects of q2 and q3

were examined similarly, using this value of q1. The

simulation combinations which were tested, are sum-

marized in Table 2, and the respective pro®les are shown

in Figs. 3±5.

The three test cases speci®ed in Table 2 cover a wide

range of combinations of the boundary conditions. In

case No. 1, the e�ect of q1 on the solution behavior is

studied, in order to determine its minimal value which

still leads to a realistic solution. The results are shown in

Fig. 3. The solution pro®les, obtained for 0:26 q16
0:65, show a wavy behavior. This is due to the evapo-

ration of liquid packets at the interface. There is a

substantial density change at the interface where the

velocity of the evaporating liquid packets increases sig-

ni®cantly in order to keep the mass balance. The force

created due to the momentum change presses the liquid

towards the solid, so that the interface becomes per-

turbed. This recoil e�ect is reported by Burelbach et al.

[14], and its contribution to the momentum balance is

expressed by the ®rst term of Eq. (A.19). This term

vanishes and no wavy pro®le develops for the case of

uniform temperature ®eld (see the solution for the iso-

thermal case, Fig. 6). Note that in Fig. 3(a)±(d), as well

as in most subsequent ®gures, the di�erent ordinate

scales provide enhanced resolution.

For q1 � 0:2 (Fig. 3(a)), the shape of the ®lm pro®le

is signi®cantly di�erent from those obtained for larger

values of q1, in that the amplitude is much greater. This

behavior is attributed to numerical stability of the

solution.

All the solution pro®les shown in Fig. 3(b)±(d) of

O(1) are suitable for the scaling of the problem. The

boundary condition q1 � 0:25 was selected because it is

the minimal value which provides a ``stable'' solution of

the interface pro®le and in the range of interest. For

smaller values of q1, it is seen from Fig. 3 that the

solution exhibits a strong wavy behavior, which can be

attributed to numerical e�ects, magnifying the physical

phenomena described above. The choice of q1� 0.25

eliminates this numerical in¯uence.

Since the range of the dimensionless slope, q2, is set

between 0.1 and 1, it follows that 0:1°6 h6 1°. De

Gennes et al. [11], in their analysis of the dynamic

contact angle, found that its characteristic magnitude is

of O(1°). Their analysis applies to a liquid at room

temperature. Thus, for rewetting conditions a slope of 1°
was taken as an upper limit of q2. The interface solutions

depicted in Fig. 4 seem to be independent of q2. There-

Fig. 1. Convergence test for the liquid±vapor interface pro®le, h(n), for di�erent number of grid points, n, (a) and (b), and for di�erent

values of the tolerance, ET, (c). Water on stainless steel, parameters as in Eq. (23a) and boundary conditions as in Eq. (22).
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fore, the upper limit of the range, at 1°, was selected as

the boundary condition. Following the determination of

q1 and q2, a wide range of values of q3 was tested. Fig. 5

shows that the solution interface is practically indepen-

dent of q3. Therefore, the lowest value of q3� 1 was

selected. The ®nal set of the three boundary conditions is

given in Eq. (22). Note that these boundary conditions

were found to apply to the complete set of liquids that

were tested in this work.

4. Results ± quantitative analysis of the interface solution

The dimensionless parameters of the interface Eq.

(16) were discussed qualitatively in Section 2. Eq. (16)

comprises seven terms and contains seven dimensionless

parameters ( �A, N, C, F/C, u�, S, F ). The quantitative

e�ects of each of the seven parameters were examined

holding the remaining six parameters ®xed. This did not

apply to F/C (terms No. 2, 3 and 6 in Eq. (16)), which is

not an independent variable, see Eq. (19). For the water±

stainless steel system, subjected to the conditions

discussed in Section 3, the reference values of the par-

ameters are as in Eq. (23a). The thermo-physical

properties of water are listed in Table 1.

As mentioned above, in the isothermal case Eq. (16)

reduces to Eq. (18a). All the terms, which are involved

with the temperature di�erence, DT , vanish. The rele-

vant parameters that apply here are �A and C, which

express the solid±liquid intermolecular forces, and cap-

illary and viscosity e�ects, and Eq. (18b) is identical to

that derived by de Gennes [7]. Fig. 6(a) shows an ex-

ample of the interface solution for this case, for water

on stainless steel. The interface pro®le is smooth: the

Fig. 2. Convergence test for the liquid±vapor interface pro®le, h(n), for di�erent number of grid points, n, (a) and (b), and for di�erent

values of the tolerance, ET, (c) and (d). Helium on stainless steel, parameters as in Eq. (23b) and boundary conditions as in Eq. (22).

Table 2

Procedure for testing the boundary conditions parameters

Test case

No.

Conditions of test Step size Upper limit of parameter

tested

Parameter

testedq1 q2 q3

1 0.2±0.65 1 1 0.05 0.65 q1

2 0.2 0.1±1 1 0.1 1 q2

3 0.2 1 1±10 1 10 q3
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Fig. 4. The liquid±vapor interface pro®le, h(n), for di�erent values of the boundary condition q2; q1� 0.25, q3� 1, see Table 2:

(a) q2� 0.1, 0.2; (b) q2� 0.3, 0.4; (c) q2� 0.5, 0.6, 0.7; (d) q2� 0.8, 0.9, 1.0.

Fig. 3. The liquid±vapor interface pro®le, h(n), for di�erent values of the boundary condition q1; q2� q3� 1, see Table 2: (a) q1� 0.2,

0.25; (b) q1� 0.3, 0.35; (c) q1� 0.4, 0.45, 0.5; (d) q1� 0.55, 0.6, 0.65.
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elimination of the surface undulation is a consequence of

absence of the recoil e�ect, as discussed above. The ®lm

thickness in the non-isothermal case (DT 6� 0, Fig. 6(b)),

is wavy and much smaller than that for the isothermal

one (DT � 0, Fig. 6(a)). This is mainly due to intensive

evaporation. Furthermore, the decrease of the surface

tension leads to a ¯atter ®lm (moderate slope of the

interface), and spreading of the ®lm on the hot surface is

enhanced. The liquid is attracted to the solid more

strongly by the intermolecular forces, as expressed by

the term 3C �Ahn=h4 in Eq. (16). The contribution of the

denominator at small values of h becomes dominant.

A parametric study was performed concerning the

e�ects of the dimensionless parameters in Eq. (16) on the

solution of the interface, h�n�. The reference values of

these parameters for water on stainless steel are speci®ed

in Eq. (23a). The e�ect of the velocity was considered

using the variation of the capillary number C. Each

parameter was tested holding the other parameters ®xed.

The results of the parametric tests are depicted in

Figs. 7±11.

4.1. Capillary number, C

A large value of the capillary number, C, indicates

that the viscous forces are stronger than the capillary

forces which arise due to the interfacial surface tension,

r. Increase of either the viscosity, g, or the velocity, U0,

results in an increase of the capillary number. Fig. 7(a)±

(d) show interface pro®le solutions, h(n), obtained for

several values of C, in the range 0.38±1.49. Smaller

Fig. 5. The liquid±vapor interface pro®le, h(n), for di�erent values of the boundary condition q3; q1� 0.25, q2� 1, see Table 2:

(a) q3� 1, 2.0; (b) q3� 3, 4; (c) q3� 5, 6, 7; (d) q3� 8, 9, 10.

Fig. 6. Solution of the interface pro®le, h(n); water on stainless

steel (reference parameters, Eq. (23a)): (a) Isothermal con-

ditions, DT� 0, de Gennes Eqs. (18a) and (18b). (b) Non-

isothermal conditions of rewetting, DT� 160°C, present

model, Eq. (16).
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Fig. 7. E�ect of the capillary number, C, on the solution pro®le, h(n), of Eq. (16): (a) C� 0.38, 0.47; (b) C� 0.57, 0.74, 0.927;

(c) C� 1.02, 1.12; (d) C� 1.23, 1.36, 1.49. Reference value: C� 0.927.

Fig. 8. E�ect of the thermo-capillary number, Ch2
0=F , on the solution pro®le, h(n), of Eq. (16): (a) TC� 4.6, 4.9, 5.1; (b) TC� 5.4, 5.7;

(c) TC� 6.3, 6.9; (d) TC� 7.6, 8.3, 9.2. Reference value: Ch2
0=F � 5:7� 10ÿ4: TC � �Ch2

0=F � � 104.
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Fig. 9. E�ect of the factor N on the solution pro®le, h(n), of Eq. (16): (a) N� 0.038, 0.043, 0.048; (b) N� 0.053, 0.059; (c) N� 0.065,

0.072, 0.079; (d) N� 0.087, 0.096. Reference value: N � 6:5� 10ÿ2.

Fig. 10. E�ect of the evaporation coe�cient, S, on the solution pro®le, h(n), of Eq. (16): (a) S� 120, 133; (b) S� 148, 164.5;

(c) S� 493, 1480, 4440; (d) S � 1:3� 104; 4:4� 104; 1:2� 105. Reference value: S � 164:5.
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values of C produce ¯atter interface pro®les, e.g., the

pro®le peaks become smaller. For example, at C� 1.49,

the highest peak of h is close to 1.5 (Fig. 7(d)), while at

C� 0.38 (Fig. 7(a)) it is close to 0.33. A simple explana-

tion for this behavior (in terms of e�ect of the velocity)

is that for smaller values of U0, the ¯ow rate is lower.

Another explanation for this phenomenon (of ¯atter

pro®le for lower C) is based on the force balance on the

liquid. Suppose C is decreased as a result of decrease in

the viscosity, g. If this would have been the only change,

with the rest of the dimensionless parameters ®xed, all

the forces would remain the same, the viscous force in-

clusively. Then for lower values of g, the velocity dis-

tribution must involve larger gradients at the wall, and

hence, at the same value of U0, the ®lm thickness must be

smaller (¯atter pro®le). Note, however, that a decrease in

g means that the thermo-capillary parameter, F/C, and

the Hamaker constant �A are also a�ected. In order to

hold the former constant, as is done here, g is postulated

to decrease. This leads to a higher value of the surface

tension, r. In order to hold �A constant, a decrease in the

parameter A (dimensional) is also postulated.

The term �A=h3 contributes to the liquid pressure.

The pressure forces near the contact line, which result

from the solid±liquid intermolecular attraction, coun-

teract the shear and capillary forces. If �A is held ®xed,

then the pressure in the ®lm increases in proportion to

1/h3. The pressure is related to the slope, hn, which

results from the pressure gradient, o� �A=h3�=on. In order

to hold the pressure ®xed, the slope, hn, should be

decreased and consequently the ®lm becomes ¯atter.

Note that the force, resulting from the change in r�H�,
is small relative to the viscous and solid±liquid attrac-

tion forces.

4.2. Thermo-capillary number, Ch2
0=F

The e�ect of the thermo-capillary number, Ch2
0=F , on

the solution pro®le is examined by changing its value in

the range 4:6� 10ÿ4±9:2� 10ÿ4 (Fig. 8). As can been

seen, larger values of Ch2
0=F entail steeper pro®les. A

high value of Ch2
0=F indicates dominance of the viscous

forces over the thermo-capillary forces which are caused

by temperature gradients. Increasing the viscosity, g, or

the velocity, U0, increases the thermo-capillary number.

If the temperature di�erence, DT , is increased, the value

of Ch2
0=F becomes smaller and the thermo-capillary

forces turn more dominant. If the solid temperature, Tw,

is increased, the liquid temperature also increases, and

the liquid±vapor interfacial tension, r�H�, decreases.

Consequently, the forces that pull the ®lm backwards

are diminished, and hence the ®lm is thicker as expected,

see Fig. 8(d).

Furthermore, an increase of Ch2
0=F by a factor of 2

(from 4:6� 10ÿ4 to 9:2� 10ÿ4) yields a threefold rise in

the maximum peak value of the pro®le (Fig. 8(d)).

Fig. 11. E�ect of the solid±liquid intermolecular force term, �A on the solution pro®le, h(n), of Eq. (16). (a) �A � 0:64; 0:70; 0:79;

(b) �A � 0:87; 0:97; 1:08; (c) �A � 1:62; 2:43; (d) �A � 3:65; 5:47. Reference value: �A � 1:08:
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4.3. The factor N

The dimensionless factor N, which appears in the

constitutive relations is one of the parameters involved

with the evaporation process. This factor includes liquid

properties such as molecular weight, thermal conduc-

tivity, heat of evaporation and temperature. Larger

values of N mean that the evaporation at the interface

becomes more intensive. This agrees with the fact that

smaller values of the saturation temperature, Ts, lead to

higher values of N. Fig. 9 shows the e�ect of N, in the

range 0.038±0.096.

Larger values of N lead to ¯atter ®lms and their

undulating or ``wavy'' behavior is intensi®ed, see

Fig. 9(d), where the undulation frequency is highest. An

increase of N means also an increase of the mass ¯ux, j,

across the interface, Eq. (A.18). This ¯ux appears in the

force balance at the interface in the normal direction, see

Eq. (A.19). At large values of j, the force expressed by

the left term of this equation, )Sj 2, becomes more

dominant, and consequently the liquid±vapor interface

is ``drawn'' towards the solid. In this case, a ¯atter ®lm is

expected, as can be seen, indeed, in Fig. 9. The forces

resulting from the liquid pressure, p, counteract the force

caused by, j 2, and due to the incompressibility of the

liquid and surface tension, the interface is ``forced'' to be

curved.

The third component in this force balance is the

capillary force, which increases with the curvature, hnn.

It is clear that along the undulating interface, the sign of

the curvature changes. In this context, the capillary

forces act to balance the two forces mentioned above.

For example, at the maxima points, where the ®lm

thickness is larger, the expected mass ¯ux j � NHI is

smaller because the interface temperature, HI, is lower.

At these points, the forces due to the liquid pressure, p,

exceed those due to j2. Therefore the capillary forces

must be directed toward the solid, resulting in a positive

curvature. At the minima points, the reverse picture

applies (the liquid pressure is smaller), and hence, the

direction of the capillary forces is towards the vapor

phase, so that the curvature is negative.

4.4. The evaporation coe�cient, S

The fourth term of Eq. (16) includes the dimension-

less parameter S, which originates from the normal

stress balance, Eq. (A.19). Larger values of S appear in

situations that involve higher temperature gradients. S

expresses the ratio between the conducted heat ¯ux,

�klDT �=�Lh0�, and that related to the evaporation

�L=�H 2
l rqvh0��. The S values were changed in the range

120±1:2� 105, and the corresponding solution pro®les

are shown in Fig. 10. Larger values of S (Fig. 10(d)) lead

to ¯atter ®lms with higher undulation frequency. This

behavior can be explained using arguments similar to

those applied above to the e�ect of N. This conforms

with S being a part of the recoil e�ect term. Moreover,

since both N and S appear in the fourth term of Eq. (16),

the e�ect of this term on the tendency of the solution

pro®le to be ¯atter is expected to be more signi®cant.

4.5. Solid±liquid intermolecular forces, �A=h3

The solid±liquid molecular interaction is expressed

by the term �Ahn=h4 in Eq. (16). The Hamaker constant,

A, usually ranges between 0:7� 10ÿ21 and 5� 10ÿ19 J. In

this work, its value was taken as 10ÿ20 J, following the

postulate of Burelbach et al. [14]. Higher values of �A
mean stronger interaction, or attraction, between the

solid and liquid molecules. Fig. 11 shows solution pro-

®les that were plotted for �A in the range 0.64±5.47. In-

crease of �A ¯attens the pro®le and concurrently its

undulation frequency increases. Thus, �A also contributes

to the surface perturbation in conjunction with N and S.

5. Summary and conclusions

This paper describes the development of a novel ap-

proach and a new method to characterize rewetting

phenomena. The basic foundation of the approach ap-

pears in [1], which de®nes the physical (hydrodynamic)

micro-scale model, and includes the derivation of the

governing equations and boundary conditions of the

mathematical model. In the present paper, this model is

used to develop the interface equation for the thickness,

h, of the liquid ®lm, as a function of the distance from its

leading edge. The full comprehensive equation appears

in Appendix B, while in the text a simpli®ed form is

derived, in a coordinate frame moving with the contact

line, n � xÿ u�t. It is emphasized that these interface

equations were developed for a non-isothermal situa-

tion, including e�ects of evaporation, thermo-capillary

and inter-molecular forces between the liquid and solid.

The new approach is a generalization of de Gennes [7]

for the case of uniform temperature, and our interface

equation reduces, indeed to his, for the particular case of

isothermal conditions. The third-order di�erential

equation for h(n) was solved numerically. The e�ects of

the numerical parameters on convergence and behavior

of the solution were investigated. This was done for

many solid±liquid pairs and demonstrated here for two

pairs, with large disparity between their properties: wa-

ter on stainless steel and helium on stainless steel. It was

found that the solution pro®les converged at relatively

small number of grid points. This is a good indication

that solutions for other systems, with intermediate

thermophysical properties, will be convergent as well. A

grid consisting of n P 60 points, and setting the relative

accuracy (tolerance) at ET6 0:01, provided convergence

for all systems investigated. The e�ects of selecting the
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boundary conditions were also considered. The set

h�n� � 0:25; hn � 1, and hnn � 1 at n � 0, guarantees a

convergent and stable solution pro®le of the interface.

A parametric study was carried out in order to

evaluate the e�ects of the various dimensionless

parameters that appear in the interface equation. Their

values were taken for a water/stainless steel system

presented here as a reference case. Decrease of the

capillary number, C, drives the solution of the interface

toward ¯atter pro®les. This behavior can be explained

by realizing that for lower values of the quench velocity,

U0, the ¯ow rate is smaller. Another explanation for this

phenomenon is based on the force balance on the liquid.

A decrease of C can be caused by a decrease in the

viscosity, g. If this is the only change, e.g., with all other

dimensionless parameters held ®xed, then all the forces

that act on the liquid would have remained the same,

inclusive of the viscous force. For a lower value of g, the

velocity distribution must have a larger gradient at the

wall, and hence, at ®xed U0, the ®lm thickness must be

smaller (¯atter pro®le).

Larger values of Ch2
0=F , which stands for thermo-

capillary e�ects, lead to steeper solution pro®les of the

interface. If the temperature di�erence, DT , is increased,

the value of C/F decreases, and the thermo-capillary

forces become more dominant. Recall that these forces

act so as to pull the ®lm backwards, and as they are

diminished, the ®lm is expected to be thicker. Further-

more, an increase of Ch2
0=F by a factor of 2, results in a

three-fold increase in the highest peak of the solution

pro®le of the interface. This means that the solution

pro®le is sensitive to changes in Ch2
0=F .

The factor N, which re¯ects the e�ect of liquid

properties, such as molecular weight and thermal con-

ductivity, in¯uences the solution pro®le considerably.

Larger values of N indicate higher evaporation rates

and mass ¯uxes across the interface. In this case, the

solution pro®le of the interface becomes ¯atter. This

re¯ects the recoil e�ect due to the mass ¯ux that presses

the ®lm down towards the solid. Consequently, for

larger values of N, a ¯atter ®lm is obtained and its

undulating or wavy behavior is intensi®ed. At higher

temperature gradients, both the interface temperature,

HI, and the undulation frequency increase. In this

context, the higher mass ¯uxes, that push the liquid

towards the solid, are responsible for enhanced wavy

behavior of the interface. The evaporation coe�cient S,

which originates from the normal stress balance, a�ects

the solution pro®le in a similar way. Larger values of S

lead to ¯atter ®lms, and at the same time their e�ect on

the frequency of undulation of the interface becomes

stronger. The e�ect of the solid±liquid intermolecular

force term, �Ahn=h4, was tested by changing the

dimensionless Hamaker constant, �A. Larger values of �A
produce a ¯atter pro®le, and surface undulation of

higher frequencies.

The new equation of the solid±liquid interface and its

parametric analysis, facilitate further insight concerning

hydrodynamic mechanisms that are involved in motion

of thin liquid ®lms on hot solid surfaces, under con-

ditions of high temperature gradients and intense evap-

oration. This gives the hydrodynamic foundation for

analysis of rewetting phenomena and the de®nition of

the quench temperature and velocity, that are discussed

in the subsequent part of this series.

Appendix A. The non-isothermal microscale hydrody-

namic model

The ®rst stage in the development of the general

theoretical method for the simultaneous determination

of rewetting velocity and temperature involved the der-

ivation of a non-isothermal microscale hydrodynamic

model, Ben David et al. [1]. The basic approach which is

outlined in this Appendix, includes a brief summary of

the underlying assumptions, the scaling of model pa-

rameters, balance equations and boundary conditions.

We present here the balance equations governing the

velocity and temperature ®eld, in the liquid layer which

¯ows behind the moving quench front. The layer con-

®guration is illustrated in Fig. 12. Following de Gennes

et al. [11] the rewetting process is dominated by the

``proximal'' region in this layer, where intermolecular

forces (mainly van der Waals) and capillary e�ects are

signi®cant.

The basic assumptions of the hydrodynamic micro-

scale model are as follows:

1. The analysis is focused on the domain close to the

contact line, which is of the order of 100 �A (10 nm),

and 1000 �A (100 nm), in the vertical direction (®lm

thickness), and the horizontal direction (parallel to

the solid surface), respectively.

2. The thin viscous liquid ®lm is bounded by its vapor

(gas phase), and by a rigid wall at constant tempera-

ture.

3. The liquid ®lm is thin enough so that gravitational ef-

fects are negligible, and van der Waals attraction

forces are signi®cant. However, the ®lm thickness still

warrants description of the liquid as a continuum and

use of related ¯ow theories.

4. The liquid ®lm consists of an incompressible New-

tonian ¯uid.

5. The liquid properties, i.e., density, viscosity, etc., ex-

cept for the surface tension, do not change signi®-

cantly with temperature, and their values are taken

as those under conditions of saturation temperature

at atmospheric pressure.

6. The liquid in the ®lm evaporates. Consequently, there

is heat, mass, and momentum transfer at the liquid±

vapor interface. The evaporation dynamics is de-

scribed by boundary condition jumps.
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7. The density, viscosity, and thermal conductivity are

assumed to be considerably greater in the liquid as

compared to the vapor, so that the dynamics of the

vapor can be decoupled from that of the liquid. This

justi®es the adoption of the one-sided model simpli®-

cation.

8. Surface phenomena such as contact angle, capillary

and thermocapillary e�ects are signi®cant.

9. The rewetting geometry is two-dimensional due to the

fact that the liquid ®lm thickness is considerably

smaller than its longitudinal dimension.

10. The small slopes (h� 1), which are characteristic of

the liquid±vapor interface in rewetting situations, al-

low the use of the lubrication approximation.

11. The three-phase contact line moves at a nearly con-

stant velocity, Urew, so that in the moving frame of

this contact line, the problem can be described as be-

ing quasi-static.

12. When the temperature at the three-phase contact line

exceeds the rewetting temperature, which is indepen-

dent of time and space, no solid±liquid contact is

possible.

The balance equations (continuity, momentum and

energy), and boundary conditions, for the liquid layer

domain under consideration, are presented in dimen-

sionless form. The corresponding scaling procedure, and

simpli®cations resulting from the above assumptions,

are outlined below.

The pressure derivatives in the momentum equations

are those of the generalized pressure, de®ned by

P � Phyd � U; �A:1�
where Phyd is the hydrodynamic pressure, and U denotes

a potential associated with the Van der Waals attraction

forces

U � U�H� � ÿA=H 3 � A=Z3: �A:2�
The boundary conditions at the wall, Z � 0, are zero

velocity (U � W � 0) and constant temperature T�Tw.

At the interface, Z � H�X ; s�, liquid±vapor jump con-

ditions are applied. The mass ¯ux, J, which appears in

these conditions, is de®ned by

J � ql�Vl ÿ VI� � n � qv�Vv ÿ VI� � n; �A:3�
where n is the normal unit vector, and V I is the velocity

of the interface, whose modulus is equal to dH=ds. This

leads to the linearized relation

J � ql�ÿHs ÿ UHX � W �: �A:4�
The mass ¯ux can also be expressed by the linearized,

kinetic, constitutive relation

J � aqvHl

T 3=2
s

� �
M

2pRg

� �1=2

T I
ÿ ÿ Ts

�
: �A:5�

The normal stress boundary condition at the inter-

face is written as a jump momentum balance, including

the surface tension r�T �. The shear stress boundary

condition includes, then, the gradient of r�T � along the

interface, owing to its dependence on the temperature,

i.e., thermo-capillary e�ect. The energy balance, rep-

resenting the boundary condition at the interface, in-

cludes the heat of evaporation, kinetic energy exchange,

heat conduction in the two phases, and rate of work due

to viscous stresses and deformation.

The governing equations and boundary conditions

are transformed into dimensionless forms by the fol-

lowing scaling procedure. The dimensionless lengths, x

and z, and ®lm thickness, h, are de®ned by:

x � X
L
; z � Z

Lh0

; h � H=Lh0; �A:6�

L � a=h2
0; a � �A=6pr�1=2

; �A:7�

where a is a convenient representative molecular size,

and h0 is a reference contact angle, which is typically

very small, O(1°).

The horizontal velocity is scaled by a reference

spreading velocity U0 � Khm
0 , where m� 3 and K is of

the order of 103 m/s. Thus, U0 � 0:01 m=s is selected.

The horizontal and vertical velocity components are

then scaled in accordance with the continuity equation

u � U=U0; w � W =U0h0: �A:8�
The time scale follows from the choice of the length

and velocity scales

t � sU0=L: �A:9�
The pressure scale is obtained by expressing a bal-

ance between pressure and viscous forces. This yields

p � Lh2
0

glU0

� �
P ; / � Lh2

0

glU0

� �
U; �A:10�

where

p � phyd � / � phyd ÿ �A=h3 � �A=z3 �A:11�
and �A is the dimensionless Hamaker constant. The

temperature ®eld is scaled through

Fig. 12. Sketch of problem geometry.
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H � T ÿ Ts

Tw ÿ Ts

; �A:12�

where Tw and Ts are the wall and saturation tempera-

tures.

The balance equations of mass, momentum and en-

ergy, obtained by applying the above model assump-

tions, simpli®cations and scaling, are as follows:

ou
ox
� ow

oz
� 0; �A:13�

ÿ op
ox
� o2u

oz2
� 0; �A:14�

op
oz
� 0; �A:15�

o2H
oz2
� 0: �A:16�

The boundary conditions at the wall are

u � 0; w � 0; H � 1 at z � 0: �A:17�
The dimensionless mass ¯ux at the interface, is ob-

tained from a balance of heat of vaporization and heat

conducted in the liquid

j � NHI; �A:18�
where HI is the interface temperature. Note that N and

the following dimensionless groups are de®ned in the

nomenclature.

The dimensionless boundary conditions at the inter-

face, of normal and shear stresses and of energy are:

ÿSj2 � Cp � ÿ o2h
ox2

1
ÿ ÿ F HI

�
at z � h; �A:19�

Ch2
0

F
ou
oz
� ÿ oH

ox

�
� oH

oz
oh
ox

�
at z � h; �A:20�

NHI � oH
oz
� 0 at z � h: �A:21�

Finally, the kinematic condition of mass balance at

the interface yields

ENHI � wÿ oh
ot
ÿ u

oh
ox

at z � h: �A:22�

Appendix B. Derivation of an interface equation and

analytical solutions of the temperature and ¯ow ®elds

The model equations, as given in Appendix A, can be

solved analytically. The temperature and ¯ow ®elds can

be solved in terms of the interface pro®le, h � h�x; t�,
which as yet is unknown.

B.1. Temperature ®eld

The solution for the dimensionless temperature ®eld

is given by Eq. (2), as a linear pro®le,

H�x; z; t� � c1z� c2: �B:1�
Using the boundary conditions; see Eqs. (A.17) and

(A.21)

z � 0 : H � 1; �B:2�

z � h : Hz � NH � 0; �B:3�
c1 is obtained as a function of h�x; t�,

c1�x; t� � ÿ N
Nh� 1

�B:4�

and

c2 � 1: �B:5�
Substituting Eqs. (B.4) and (B.5) into Eq. (B.1), gives

H�x; z; t� � 1� N�h�x; t� ÿ z�
1� Nh�x; t� : �B:6�

Hence, the temperature, H, at the liquid±vapor in-

terface, z � h�x; t�, is given by

HI � 1

1� Nh
: �B:7�

B.2. Formulation of the interface equation

By virtue of continuity, see Eq. (A.13), and integra-

tion across the liquid layer, the following expression is

obtained:

ÿ
Z h

0

ux dz � wjh0 � w�h� ÿ w�0�; �B:8�

where w(h) and w(0) is the vertical component of the

velocity at z� h and z� 0, respectively.

Substitution of the no-penetration (rigid-wall)

boundary condition, Eq. (A.17), and using the Leibnitz

rule, expression (B.8) may be presented as

uz�hhx ÿ o
ox

Z h

0

udz � wz�h: �B:9�

The vertical velocity component, w, at z� h, is given

by the kinematic boundary condition, see Eqs. (A.4),

(A.5) and (A.22). Therefore, substitution of Eq. (B.9)

into Eq. (A.22) leads to

ht � ENHI � o
ox

Z h

0

udz � 0: �B:10�
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The velocity, u, is obtained by solving the momentum

balance in the x direction, Eq. (A.14)

uzz � px; �B:11�
where the generalized pressure p includes the solid±

liquid potential of interaction, /, see Eqs. (A.1), (A.2)

and (A.11). The pressure distribution is given by Eq. (15)

p�x; z; t� ÿ pg � ÿ 1

C
hxx�1
� ÿ F HI� ÿ Sj2

�ÿ �A
h3
�

�A
z3
;

�B:12�
where pg is arbitrarily set to zero.

Using Eq. (A.18) for the mass ¯ux and Eq. (B.7) for

the interface temperature, HI, and substituting the

pressure from Eq. (B.12) into the momentum balance

(B.11), gives

uzz � 1

C

"
ÿ hxxx 1

�
ÿ F

1� Nh

�
ÿ FNhxxhx

1� Nh� �2

ÿ 2SN 3hx

1� Nh� �3
#
� 3 �Ahx

h4
: �B:13�

The velocity component, u, is obtained by double

integration of Eq. (B.13).

u�x; z; t� � f1�x; t�z2 � f2�x; t�z� f3�x; t�; �B:14a�
where

f1�x; t� � 1

2C

"
ÿ hxxx 1

�
ÿ F

1� Nh

�

ÿ FNhxxhx

1� Nh� �2 ÿ
2SN 3hx

1� Nh� �3
#
� 3 �Ahx

2h4
�B:14b�

and f2�x; t� and f3�x; t�, which do not depend on the

variable z, are determined through the boundary con-

ditions for the velocity, at z � 0 and z � h.

At the solid, z � 0, application of the no-slip condi-

tion, as given by Eq. (A.17), gives

u�x; z � 0; t� � f3�x; t� � 0: �B:15�
The tangential-stress boundary condition at z� h, see

Eq. (A.20), is used to determine f2(x,z)

Ch2
0

F
uzjz�h

� ÿ�Hx �Hzhx�jz�h; �B:16a�

where Ch2
0=F is the thermo-capillary number [1].

At z� h, substitution of the derivatives of the tem-

perature function, see Eq. (B.6), with respect to z and x,

into Eq. (B.16a), gives,

uz � FNhx

Ch2
0�1� Nh�2 ; z � h �B:16b�

According to the velocity function, Eq. (B.14a), the

following expression for uz, at z� h, is derived:

uz � 2f1�x; t�z� f2�x; t�jz�h

� 2f1�x; t�h� f2�x; t�: �B:17�

Solving Eqs. (B.16b) and (B.17) for f2�x; t� yields

f2�x; t� � FNhx

Ch2
0�1� Nh�2 ÿ 2f1�x; t�h; �B:18�

where f1�x; t� is de®ned by (B.14b).

Now that the velocity, u, is known, the integral term

in the kinematic boundary condition, Eq. (B.10), can be

found. Furthermore, the mass ¯ux, j, is expressed by its

dimensionless constitutive expression, Eq. (A.18). The

result is the following interface equation:

ht � EN
1� Nh

� o
ox

Z h

0

�f1�x; t�z2 � f2�x; t�z�dz � 0:

�B:19�
Substituting the explicit expressions from Eqs.

(B.14b) and (B.18), for f1(x,t) and f2(x,t), in Eq. (B.19),

gives the following interface equation:

ht � EN
1� Nh

� 1

C
o
ox

h3

3
hxxx 1

�"(
ÿ F

1� Nh

�

� FNhxxhx

1� Nh� �2 �
2SN 3hx

1� Nh� �3 ÿ
3 �AChx

h4

#
r

� FNhxh2

2h2
0�1� Nh�2

)
� 0: �B:20�

This is a highly non-linear and complex partial dif-

ferential equation, which is di�cult to solve, even nu-

merically.

The temperature and velocity ®elds depend on the

pro®le of the liquid±vapor interface, h(x,t), and hence,

unless it is known, they cannot be solved. The excessive

complexity of Eq. (B.20) proved to be prohibitive, at this

stage, for further use, and it was necessary to apply

simplifying assumptions. To this end, the de Gennes

hydrodynamic approach was incorporated in order to

simplify the hydrodynamic treatment of the problem.

B.3. Analytical solution of the ¯ow ®eld

If the solution of Eq. (B.20) is known, the velocity

®eld can be derived. The tangential velocity component,

u, is given by Eqs. (B.14a) and (B.14b), and the normal

velocity component, w, can be derived from continuity.

Integrating the latter givesZ
�ux � wz�dz � f4�x; t�; �B:21�

where f4�x; t� is an integration constant. Hence

w�x; z; t� � f4�x; t� ÿ
Z

ux dz: �B:22�
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Substitution of u, from Eq. (B.14a), in (B.22), gives

w as

w�x; z; t� � f4�x; t� ÿ f1�x; t�x
z3

3

�
� f2�x; t�x

z2

2

�
: �B:23�

The no-penetration boundary condition of w at z� 0,

Eq. (A.17), is used to determine the coe�cient f4(x,t),

f4�x; t� � 0: �B:24�
In summary, the non-isothermal microscale tem-

perature and ¯ow ®elds can be solved analytically,

provided that the pro®le of the liquid±vapor interface is

solved ®rst as a function of x and t.
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